Tscope reference-manual

January 12, 2011

Abstract

This is the Tscope reference manuall. Tt gives an in-depth
explanation of every function made available by Tscope.

Contents

© © 0 0 0 0o N N oS

f

|

5

|

|

|

|

! Copyright (©2003, 2004 Michael Stevens. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is is included in license.html.

I3 Coordinate systeml 13
Bl XMAX . . o oo 13
B2 YMAX . .o oo 13
B3 SXMAX . . oo 13
Bd SYMAX . . oo 13
[3.5_int ts_coordinates (int system)] 13
B.6 intax (floatx)f 13

3.7 intay (foatv) 14
3.8 intsx (floatx)] 14
39 intsy (floatx) 14

B10intex (Aoatx) 14
Bl intcy (Hoaty) 14
312 void tsagrid () 14
Ba3 voidtsregrid O 14

|4_Formatted text input/output 15
TR i . T 1. 15

[4.2 int ts printf centre(int x, int v, const char *txt. ..} 15

13 i Nt right(] : har * ;|15

4.4 int ts printf justifv(int x1, int x2. int v, const char *txt, ..) 15

Tscope reference-manual 2

[6.9 int ts resp(_int64 *time, int64 *error, _int64 maxtime)] 22

[6.12 void ts flushresp(} 22

[6.13 void ts vsync(_int64 *time, _int64 *error)] . 22

[6.14 void ts vsynes (__int64 *time, __int64 *error, int nsync)i 23

6151 (ini64 i — : ;|23

Tscope reference-manual

Tscope reference-manual

[11.13snd2 stream * snd2 recordsample(snd2 sample *samp) 36
[11.14snd2 stream *snd2 playsample(snd2 sample *samp)f 36
[11.15int snd2_querysample(snd2 stream * stream) 36
[11.16void snd2 stopsample(snd2 stream * stream)] 36
[11.17float snd2 getstreamtime(snd2 stream * stream)] 36
[11.18_int64 snd2 getsampletime(snd2 sample * samp)] 36
[[1.19void snd2 tobuffer(snd2 sample * samp)] . . . 36
[[1.20void snd2 frombuffer(snd2 sample *samp)} . . 36
[12 Linux notes 37
M20 tS UoTIty] « « « v oo e e 37
[12.2 tswaitmodd 38
(2.3 tsdefleyl . . o oo oo 38
[24 tsvsynd - o o ovoe 38
[13 Mac OS X notes 39
(31 S oty « « o v voeee e 39
[13.2 tswaitmodd 39
(33 tsdefkeyd . . . oo oo 39
[34 tsvsynd - o oo oo 39
3.5 tstrigged . .« v vve e 39
[14 Appendix A: Predefined valued 40
[14. debug leve S 40
42 Colordepthd 40
[14.3 Screensized 40
[14.4 Screenmoded 40
[45 Colord 40
[46 Fontd 41
[47 Fontsizedo A1
(48 Fontstyled A1
[14.9 Coordinate systemd 41
[14.10Program prioritied 41
[41iButtond A1
[412Wait moded 42
413Vsynemoded 42
[14.14Flipped blit moded 43
[14.15Sound: number of channeld 43
[14.16Sound: sample format for output. filed . 43
[15 Appendix B: Tscope internald 44

Tscope reference-manual

1 Screen and double buffer operations

1.1 int ts_init ();

Defined in screen.h and screen.c
This part contains:

e A function to initialize the library and to set up a di-
rectX screen for the experiment to run in.

e Functions to change the setup of the screen.

e Functions to manipulate the double buffer.

Initializes the graphics mode and makes a double buffer if
needed. The default settings are:

e Opens in a window.
e Resolution of 320 x 240 pixels.

e 16 bit color depth for fullscreen modes, same color
depth as the desktop for window modes.

e G0Hz refresh rate for fullscreen modes (for window modes
the refresh rate canf logically be different from the
desktop refresh rate).

e No double buffer.

The default settings should be satisfactory while program-
ming your experiment. The screen parameters can be changed
with the functions ts_refreshrate, ts_colordepth, ts_scrsize,
ts_scrmode en ts_doublebuff. These parameter functions have
to be called before you call ts_init. With the next call of
ts_init the requested values will be used.

Some of the most frequent changes to the default values are:

e full screen modes with a higher resolution during data
collection.

e playing with refresh rates when doing priming experi-
ments.

e using the double buffer for presenting complicated stim-
uli.

Most of the Tscope functions need the graphics screen to
be opened (exceptions are the screen parameter functions
themselves, randomizer functions, timer functions and sound
stream functions). Therefore, any calls to these functions
before you open the graphics screen with ts_init will trigger
a graphics screen automatically.

Multiple instances of ts_init can be called throughout your
program, for instance to change the refresh rate between two
blocks.

If you successively change color depth and/or screen reso-
lution, the current double buffer is destroyed and replaced
by a new one. This means that the current buffer contents
are removed and have to be reconstructed if desired. The
destruction of the old buffer is necessary to avoid conflicts
between old and new resolutions and/or color depths.

If the requested color depth is changed between two succes-
sive calls of ts_init, the foreground, background and mouse
cursor colors are reset.

Tscope reference-manual

file:../../include2/screen.h.html
file:../../src/screen.c.html

1.2 void ts_fatal (const

If opening a graphics screen fails, Tscope closes with an
error message. This can happen for instance with some
combinations of screen parameters that are not possible.
The possibilities and limitations depend on the hardware
used (load increases with increasing resolution, color depth
and/or refresh rate). In the tests section, you will find a
program called testscreen.c that can be used to determine
which graphics modes are possible with your hardware.

While running in a window (e.g. during preliminary pro-
gramming) the window is always kept smaller than the desk-
top. Furthermore, the window uses the color depth of the
desktop for the sake of speed. Once going full screen, the ac-
tual requested settings will be used. If these settings are not
realistic, the program quits with an error-message. The only
exception to this behavior concerns the refresh rate. If the
requested refresh rate is too high (we know that a refresh rate
of 1000Hz would come handy), the program is not aborted
but the refresh rate is automatically lowered. Tscope will in-
form you when it automatically lowers the requested refresh
rate (see also ts_refreshrate).

The return value of ts_init is the actual refresh rate. This
value and some more information about the operating sys-
tem, desktop settings and the graphics mode are printed to
the console.

char *format, ...);

Closes the library safely, and prints the error-message pro-
vided in the format string *format to the console.

1.3 void ts_scrcfg (char *file)

Reads screen parameters from a configuration file.

A sample configuration file (tscope.cfg) is given in the exam-
ples section of the site.

The configuration file consists of sections which are marked
by [NAME OF SECTION]. ts_scrcfg only reads the [screen]
section. In this section there are five possible entries for
setting the screen parameters. The entries are ts_debug=,
ts_refreshrate=, ts_colordepth=, ts_scrsize= and ts_scrmode=.

Each entry controls what the parameter function with the
same name would control.

All possible values for each entry are listed as comments in
the sample configuration file. If a wrong value or more than
one value is entered for a given entry tscope closes with an
error message.

If one of the entries is not in the file (or commented out
with #) the corresponding parameter will not be altered by
ts_scrcfg.

If an entry appears more than once in the file, only the first
appearance has effect.

The screen is not automatically opened or re-opened by this
function.

Tscope reference-manual

1.4 int ts_debug(int mode);

Controls the amount of debugging info that is printed on
the console while Tscope is running. The default setting is
DEBUGI. There are five possible settings:

e DEBUGO no debugging info

e DEBUGI report automatic changes to screen parame-
ters

e DEBUG2 report when Tscope subsystems are loaded

e DEBUGS print some info about the system we’re run-
ning on
e DEBUGH4 report when data files and response keys are
loaded
If other values are passed to this function, Tscope closes with
an error message.

Returns previous setting.

1.5 int ts_refreshrate (int rate);

Changes the refresh rate to be requested with the next call
of ts_init. The default value is 60 Hertz.

There are limitations in the use of refresh rates. The possi-
bilities depend on a combination of the hardware, the color
depth and the resolution you want to use. If the refresh rate
you asked for is beyond the possibilities of your system, the
closest possible rate is used. When working in a window
(not fullscreen) the refresh rate of the desktop is used. The
eventual used refresh rate is returned with the next call of
ts_init.

Frequently used refresh rates are 60, 70, 72, 75, 85 and
100. All values between 50 and 150 will be accepted by
ts_refreshrate, but remind that this doesn’t necessarily mean
that your hardware supports these values. When feeding this
function with values below 50 or above 150, Tscope closes
with an error message.

Returns the previous refresh rate.

1.6 int ts_colordepth (int depth);

Changes the color depth to be requested with the next call
of ts_init. The default color depth is 16 bit. When working
in a window (not fullscreen) the color depth adopts to the
color depth of the desktop for the sake of speed.

Possible values are 8, 15, 16, 24 or 32 bits. If other values are
passed to this function, Tscope closes with an error message.

Returns previous color depth.

1.7 int ts_scrsize (int size);

Changes the screen resolution to be requested with the next
call of ts_init. The default resolution is 320 x 240 pixels.
When working in a window, the dimensions of the window
are always kept smaller than the dimensions of the desktop.

Tscope reference-manual

Possible dimensions are given below, together with their
industry-standard name - which can also be used in calls
to ts_scrsize - and corresponding resolution.

e SIZEO (QVGA, 320 x 240 pixels).
o SIZE1 (VGA, 640 x 480 pixels).

SIZE2 (SVGA, 800 x 600 pixels).
SIZE3 (XGA, 1024 x 768 pixels).
(
(
(

e SIZE4 (XGAplus, 1152 x 864 pixels).
SIZES5 (SXGA, 1280 x 1024 pixels).
SIZE6 (SXGAplus, 1400 x 1050 pixels).
SIZE7 (UXGA, 1600 x 1200 pixels).

Sizes 3 to 7 also have a widescreen version:
WSIZE3 (WXGA, 1280 x 768 pixels).
WSIZE4 (WXGAplus, 1440 x 900 pixels).
WSIZE5 (WSXGA, 1600 x 1024 pixels).
WSIZE6 (WSXGAplus, 1680 x 1050 pixels).
WSIZE7 (WUXGA, 1920 x 1200 pixels).

For those interested in the weird industry-standard names:
VGA stands for Video Graphics Array, QVGA for Quarter
VGA, SVGA for Super VGA, XGA for eXtended Graphics
array, SXGA for Super XGA, UGXA for Ultra XGA. The
W means: Widescreen.

If other values are passed to this function, Tscope closes with
an error message.

If a fullscreen resolution is too big for your monitor or graph-
ics adaptor, Tscope also closes with an error message.

Returns the previous resolution.

1.8 int ts_scrxy (int x, int y);

As an alternative to ts_scrsize, this function can be used
to specify the width and height of the screen separately (in
number of pixels on the x and y axis). Only use this if none
of the resolutions that can be set using ts_scrsize match your
requirements.

Returns the previous resolution.

1.9 int ts_scrmode (int mode);

Sets the screen mode. Default is WINDOW. WINDOW
opens a window, FULLSCREEN opens fullscreen without
hardware acceleration, FULLSCREEN_ACCEL opens fullscreen
with hardware acceleration. If other values are passed to this
function, Tscope closes with an error message.

Returns the previous screen mode.

Tscope reference-manual

1.10 int ts_doublebuff (int mode);

1.11 void ts_clrscr();

Sets the double buffer setting to be requested with the next
call of ts_init. Default is OFF. ON means working with dou-
ble buffer, OFF without. If other values are passed to this
function, Tscope closes with an error message.

The double buffer can be used if your stimuli are too complex
to draw within one refresh cycle of the screen. In that case,
you take the time necessary to draw your stimuli on the
buffer, and after it’s finished you can blit the buffer onto the
screen within a few milliseconds.

The double buffer will be automatically destroyed and re-
placed by a new one if the color depth or resolution of the
screen are changed.

Returns the previous double buffer setting.

Clears the screen. If the screen is not running yet, Tscope
closes with an error message.

1.12 void ts_scrdump ();

1.13 void ts_tobuff ();

1.14 void ts_toscr ();

1.15 wvoid ts_clrbuff ();

1.16 void ts_blitbuff ();

Grabbing function that makes a dump of the screen to a
file in the present working directory. The first screendump
made by a program will be called dumpl.bmp, the second
dump2.bmp, etc. If the screen is not running yet, Tscope
closes with an error message.

When calling drawing or text output operations, Tscope
needs to know the destination (screen or double buffer). The
default destination is the screen. This function makes the
double buffer the destination. If the screen is not running
yet, or no double buffer is present, Tscope closes with an
error message.

Sets the screen as destination bitmap for drawing. This func-
tion is necessary when working with a double buffer or mem-
ory bitmaps. If the screen is not running yet, Tscope closes
with an error message.

Clears the double buffer. If the screen is not running yet,
or no double buffer is present, Tscope closes with an error
message.

Blits the double buffer to the screen. If the screen is not
running yet, or no double buffer is present, Tscope closes
with an error message.

Tscope reference-manual

10

2 Graphics parameters

Defined in |graphics.h and graphics.c

This part contains functions to change the graphics param-
eters of the text output and drawing functions. By default,
text appears in a terminal font, and circles, ellipses etc. are
not filled. All drawing is done in white against a black back-
ground. The text and drawing functions do not have argu-
ments to alter the graphics parameters. This is done with
the parameter functions below. They all change one param-
eter, e.g. the foreground color. Once a parameter value is
changed, the given value is used for all further drawing until
it is changed again.

The parameter functions all have the previous parameter
setting as return value. This can be useful when you want
to change some parameters in one part of a program, do
some drawing and set the previous parameters again, with-
out causing undesired parameter changes to other parts of
the program.

2.1 int ts_bgcolor (int color);

Sets the background color. Default is black. Once a color
is set, it remains active until another color is set. When
this function is called, both the screen and double buffer are
cleared to match the new background color.

Tscope represents colors as integer values. You can use pre-
defined color values (see appendix) or you can compute a
color value based on RGB triplets with ts_makecolor.

Returns the previous background color value.

Possible colors can be found in the appendix of the reference
manual, or can be made by yourself through ts_makecolor.

2.2 int ts_fgcolor (int color);

Changes the drawing color of all subsequent drawing oper-
ations. The default color is white. Once a color is set, it
remains active until another color is set.

Tscope represents colors as integer values. You can use pre-
defined color values (see appendix) or you can compute a
color value based on RGB triplets with ts_makecolor.

Returns the previous drawing color value.

2.3 int ts_textmode (int color);

Sets the background color of text. Default is transparent
(predefined as TRANS). Once a color is set, it remains active
until another color is set.

Tscope represents colors as integer values. You can use pre-
defined color values (see appendix) or you can compute a
color value based on RGB triplets with ts_makecolor.

Returns the previous text background color value.

Tscope reference-manual

11

file:../../include2/graphics.h.html
file:../../src/graphics.c.html

2.4 int ts_makecolor (int r, int g, int b);

Computes a color value based on an RGB triplet. r, g and
b are from the range [0,255].

It is possible to call this function as a parameter to the func-
tions ts_bgcolor, ts_fgcolor or ts_textmode (e.g. ts_fgcolor
(ts-makecolor (255,0,0)); changes the drawing color to red).

2.5 int ts_makehsvcolor(float h, float s, float v);

Computes a color value based on an HSV (hue, saturation,
value) triplet. Hue is between 0 and 360, saturation and
value between 0 and 1.

This function can be used as an alternative to ts_makecolor.

2.6 int ts_fill (int mode);

This function can be used to set the fill-mode for future
drawing operations. When set to ON, circles and rectangles,
etc. are filled. Only contours are drawn when set to OFF.
Default is OFF.

Returns the previous fill-mode.

2.7 int ts_font (int type, int size, int style);

Sets the font used for future text output operations. Three
fonts are available: ARIAL, COURIER and TIMES. They
all come in 16 sizes: 8, 9, 10, 11, 12, 14, 16, 18, 20, 22,
24, 26, 28, 36, 48 and 72 pixels. Four styles are possible:
regular (REG), and bold (BOLD), italics (IT), or bold italics
(BOLDIT).

Default a terminal-like font is used. The other fonts are

provided in separate data files and are loaded the first time

they are used. This takes some time (not exactly much, but

enough to mess up the timing of a response), so make sure

all used fonts are loaded before the first trial starts.

The font data files are provided in /usr/local/fonts. Tscope

will search for the font files in the program’s working direc-

tory, the fonts subdirectory of this directory and in /usr/local/fonts.

Returns the number of the previous font.

2.8 int ts_setfont (int fontno);

Sets the font based on the return value of a previous call to
ts_font. Can be useful if one part of a program changes the
font and wants to switch to the previous font again, without
explicitly knowing what the previous font was.

ts_setfont(0) switches back to the default terminal font.

Returns the number of the previous font.

2.9 int ts_loadfont (char *fontfile);

Sets a font from a custom font file. It will search for the font
file in the program’s working directory, the fonts subdirec-
tory of this directory and in /usr/local/fonts.

The Tscope FAQ explains how to make a custom font file.

Returns the number of the previous font.

Tscope reference-manual 12

3 Coordinate system

3.1 XMAX
3.2 YMAX
3.3 SXMAX

3.4 SYMAX

Defined in icoordinates.hl and icoordinates.c

There are two coordinate systems available in Tscope. You
can use the standard computer coordinates, with the origin
(0,0) in the upper left corner of the screen, with increasing
coordinate values to the left of and below the origin. You
can also use an Cartesian system, with the origin (0,0) in the
center of the screen and increasing coordinate values to the
left and above the origin, and decreasing (negative) values
to the right and below the origin. Default is the Cartesian
system.

Coordinates are given in pixels. Helper functions are avail-
able that transform percentages of the screen size into num-
ber of pixels.

The Cartesian system makes simple stimulus setups in the
center of the screen simpler, but not really suitable for more
complex operations like blitting, or for experienced graphics
programmers. Switching between the systems can be done
with a parameter function.

Macro that contains the horizontal size of a screen quadrant
in pixels. Its value is not defined before the graphics screen
is opened.

Macro that contains the vertical size of a screen quadrant in
pixels. Its value is not defined before the graphics screen is
opened.

Macro that contains the horizontal size of the screen in pix-
els. Tts value is not defined before the graphics screen is
opened.

Macro that contains the vertical size of the screen in pixels.
Its value is not defined before the graphics screen is opened.

3.5 int ts_coordinates (int system);

3.6 int ax (float x);

Switches between the Cartesian and standard coordinate sys-
tem. Predefined values are CARTESTAN and STANDARD.
Default is CARTESIAN.

Returns the value of the previous setting.

Transforms percentages of the horizontal screen or screen
quadrant size to absolute values (pixels). Its behavior de-
pends on the coordinate system used.

With the Cartesian system x=0 refers to the center of the
screen, x=1 refers the to right-hand side border and x=-1
refers to the left-hand side border.

Tscope reference-manual

13

file:../../include2/coordinates.h.html
file:../../src/coordinates.c.html

3.7

3.8

3.9

3.10

3.11

3.12

3.13

int ay (float y);

int sx (float x);

int sy (float x);

int cx (float x);

int cy (float y);

void ts_agrid ();

void ts_rgrid ();

With the standard system x=0 refers to the right-hand side
border, x=1 refers to the left-hand side border.

It is possible to call this function as a parameter to a draw-
function (e.g.: when using the Cartesian coordinate system,
ts_putpixel (ax(.5), 0); writes a pixel eighty pixels to the
right of the center in the case of a 320x240 sized screen, or
160 pixels to the right in the case of a 640x480 sized screen).

Like ax, but for horizontal coordinates.

Converts horizontal Cartesian coordinates to standard coor-
dinates.

Converts vertical Cartesian coordinates to standard coordi-
nates.

Converts horizontal standard coordinates to Cartesian coor-
dinates.

Converts vertical standard coordinates to Cartesian coordi-
nates.

Useful function when designing the graphical interface of
your experiment. Draws a Cartesian/standard grid to the
screen using absolute coordinates (pixels). This function is
especially handy when you want to obtain absolute pixel
sizes of all your stimuli (dependent of screen size).

Useful function when designing the graphical interface of
your experiment. Draws a Cartesian/standard grid to the

screen using relative coordinates (percentages of screen/quadrant

size). This function is especially handy when you want to
obtain relative sizes of all your stimuli (independent of screen
size).

Tscope reference-manual

14

4 Formatted text input/output

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Defined in textio.h and textio.c

The text input-output functions all take the smallest possible
number of parameters to put something on the screen: two
coordinates, and a format string.

The vertical coordinates are interpreted differently by the
two coordinate systems. With Cartesian coordinates, the
text is vertically centered around the y coordinate. With
standard coordinates, the y coordinate corresponds to the
top of the text (like in other libraries).

The format string is the same as the standard C printf and
scanf function families. It does not recognize the \t and \n
escape characters, however. These are rendered as a a caret

(")
Drawing parameters are set with the graphics parameter
functions.

int ts_printf(int x, int y, const char *txt, ...)

Writes text in *txt to position x, y of the current destination
bitmap. The color of the text is defined with ts_fgcolor. The
string to be printed can be specified using a printf() like
format string. The maximum length of the string is set to
512 characters.

Returns the length of the output string in pixels.

int ts_printf _centre(int x, int y, const char *txt, ...)

Like ts_printf, but centered around x, y.

Returns the length of the output string in pixels.

int ts_printf right(int x, int y, const char *txt, ...)

Like ts_printf, but aligned to the right of x, y.
Returns the length of the output string in pixels.

int ts_printf_justify(int x1, int x2, int y, const char *txt, ...)

Like ts_printf, but the text is justified between x1 and x2.
Returns the length of the output string in pixels.

int ts_textheight ()
Returns the height of the font in pixels.

int ts_textlength (char *txt)
Returns the length of string *txt in pixels.

int ts_scanf (int x, int y, char *format, ...);

Reads input from the keyboard with formatted input like
scanf(). The input appears on the screen starting at position
(%,)

By default, the standard US keyboard layout (qwerty) is
used. If you want to use another keyboard layout, you will

Tscope reference-manual

15

file:../../include2/textio.h.html
file:../../src/textio.c.html

have to reconfigure Allegro on a per-computer basis. The
Tscope FAQ explains you how.

Returns the number of variables that have been read suc-
cessfully, or EOF (-1) if no input has been read at all. If
reading fails, the content of the supplied variables is not al-
tered. Therefore it is advisable to initialize any variables
supplied to ts_scanf before calling the function, and/or to
check the return value of ts_scanf after the call.

Tscope reference-manual

16

5 Drawing primitives

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Defined in draw.hl and draw.c

Like the text input-output functions, the drawing functions
all take the smallest possible number of parameters to put
something on the screen: some coordinates.

Drawing parameters are set with the graphics parameter
functions.

void ts_getpixel (int x, int y)
Reads the color of the pixel at position (x,y). The source
bitmap is set using ts_tobuff, ts_toscr or ts_tobmp.

void ts_putpixel (int x, int y)
Writes a pixel to the specified position in the bitmap. Color
set with ts_fgcolor and the destination bitmap is set using
ts_tobuff, ts_toscr or ts_tobmp.

void ts_circle (int x, int y, int radius)
Draws a circle around point (x,y) using radius as radius. Use
ts_fill for switching fill mode.

void ts_line (int x1, int y1, int x2, int y2)
Draws a line between (x1,yl) and (x2,y2).

void ts_hline (int x1, int x2, int y)
Draws a horizontal line between x1 and x2 at vertical posi-
tion y.

void ts_vline (int x, int y1, int y2)
Draws a vertical line between y1 and y2 at horizontal posi-
tion x.

void ts_rect (int x1, int y1, int x2, int y2)
Draws an outline rectangle with the two points as its oppo-
site corners. Use ts_fill for switching fill mode.

void ts_triangle (int x1, int y1, int x2, int y2, int x3, int y3)
Draws an outline triangle with points (x1,y1), (x2,y2) and
(x3,y2) as vertexes. Use ts_fill for switching fill mode.

void ts_polygon (int points, int *xy)

Draws a polygon with an arbitrary number of vertexes. Pass
the number of vertexes and an array containing a series of
x, y points (should be an array with a total of vertexes*2
values). Polygons are never filled. Only the contours are
drawn.

5.10 void ts_arc (int x, int y, int angl, int ang2, int r);

Draws an arc with center (x,y) and radius r starting at an-
gle angl until it reaches angle angl. Angles are in degrees
counter-clockwise (0-360): zero is to the right of the center
point, larger values rotate anticlockwise from there.

Tscope reference-manual

17

file:../../include2/draw.h.html
file:../../src/draw.c.html

5.11 void ts_ellipse (int x, int y, int rx, int ry);

Draws an ellipse with center (x,y) and x-radius rx and y-
radius ry. This function is only suitable for horizontally or
vertically oriented ellipses. No other rotations are supported.
Use tsfill for switching fill mode.

5.12 void ts_floodfill (int x, int y);

Floodfills an enclosed area with the current drawing color
starting at point (x,y).

Tscope reference-manual

18

6 Timing and registering responses

Defined in ftimer.h and ftimer.c
This part contains:
e Functions to define response buttons.

e Functions to register stimulus and response times (in
clock tics) and to estimate the timing error (i.e. the
time elapsed between successive checks of the input
status).

e Functions to convert clock tics to microseconds, mil-
liseconds and seconds, and the other way around.

e A function to set the program priority.

While most other function groups in Tscope only use Allegro
and standard C functions, this function group pulls together
three different libraries. In case you want to program a cus-
tom timing function, you will need to know the following;:

o windows.h is used to read out the system timer and
sets program priority.

e joperm.h is used to read out the status of the game
port, parallel port, and vsync registry with millisecond
accuracy.

e allegro.h is used to read out joystick, keyboard and
mouse status. Because of the type of buttons used
in these devices, they can not be used for millisecond
accurate response registration.

6.1 void ts_timercfg (char *file)

Reads timing parameters from a configuration file.

A sample configuration file (tscope.cfg) is given in the exam-
ples section of the site.

The configuration file consists of sections which are marked
by [NAME OF SECTION].ts_timercfg only reads the [timing]
section. In this section there are five possible entries for set-
ting the timing parameters. The entries are ts_priority=,
ts-waitmode=, ts_vsyncmode=, ts_vsynclimit= and ts_defkey=.

Each entry controls what the parameter function with the
same name would control.

All possible values for each entry are listed as comments in
the sample configuration file. If a wrong value or more than
one value is entered for a given entry tscope closes with an
error message.

The ts_defkey= entry is an exception to this: here, more than
one parameter (response key) can be set. All of the response
key should be listed on one line, separated by spaces. The
first key listed gets number 1, the second gets number 2, etc.

If one of the entries is not in the file (or commented out
with #) the corresponding parameter will not be altered by
ts_timercfg.

If an entry appears more than once in the file, only the first
appearance has effect.

Tscope reference-manual

19

file:../../include2/timer.h.html
file:../../src/timer.c.html

When calling this function, all existing response key defini-
tions are removed and the timing subsystem is automatically
restarted.

Reads timing parameters from a configuration file.

6.2 int ts_priority (int prio)

Sets the program priority. Six values are defined: REAL-
TIME, HIGH, ABOVE_.NORMAL, NORMAL, BELOW_NORMAL
and IDLE. By default, Tscope programs run with NORMAL
priority.

Returns value of previous priority setting.

Be careful with higher priority modes. To avoid problems,
set higher priority modes only when needed (during a block
of trials) and switch back to normal priority when timing
accuracy is not an issue.

Only start increasing the priority when you are sure your
program works without any problems. HIGH priority is the
best compromise between timing accuracy and safety. A
program that runs with HIGH priority will not be put aside
by normal programs, but it will still be possible to stop the
program using the task manager.

Only use REALTIME priority when the other priority modes
are not sufficient. With realtime priority, an endless loop in
your program will hang the system - there is no way to stop
a program running with REALTIME priority!.

Also keep in mind that reading input from keyboard, mouse
and joystick is impossible when running with REALTIME
priority on Windows XP. Playing .wav files will not be pos-
sible either when running with REALTIME priority.

The BELOW_NORMAL and IDLE priority modes are not
really useful for running experiments. For running simu-
lations they are: in IDLE mode, a program will only use
system resources if there are no other processes running (i.e.
when you're not using your computer for anything else).

6.3 __int64 ts_time();

Returns time in clock tics since computer start-up. This
function can be useful to check the speed of a particular
piece of code. It can also be used for custom timer functions
(double task, ...). Use this function only if needed. For
regular response registration it’s easier to use ts_resp.

6.4 void ts_wait(__int64 time);

Wait function. This function uses a regular busy-loop, but
it keeps monitoring input from response devices. This is
useful to avoid that responses registered during the inter trial
interval are buffered, causing the next response registration
to "flip through”.

6.5 int ts_waitmode(int mode);

Alters the waiting behavior of Tscope’s timing functions.
Normally these functions run in tight busyloops that never

Tscope reference-manual 20

return control to the operating system. This way (almost)
all cpu time will be used by your Tscope program. During
experimental runs this is the best choice (best timing preci-
sion), but during development and testing of a program it
can be annoying (as other programs will run very slow).

ts_waitmode controls under which conditions Tscope will ex-
plicitly give up cpu time and allow other programs to run.
There are four possible parameters:

e BUSYLOOP: never give up cpu time (default - best
timing precision).

e SLEEP_WAIT: give up cpu time (sleep) while waiting
for a time interval to elapse. Cpu usage drops but
timing accuracey of ts_wait will be less.

e SLEEP_RESP: give up cpu time while waiting for an
interval or a response. Cpu usage drops even more but
timing accuracy of ts_resp and ts_release will also be
less.

e SLEEP_VSYNC: give up cpu time while waiting for an
interval, a response or a vertical screen sync. Cpu usage
drops a tiny bit further but ts_vsync can completely
stop working. Don’t use this parameter: it’s not here
for actual use, only for the sake of completeness.

Returns the value of the previous waiting mode.

6.6 int ts_defkey (int key)

Defines the response keys. They should be entered one by
one, by repeating the call to this function. The first key
defined gets number 1, the second defined 2, etc.

Returns the response number assigned to the key.

All key codes can be found in the appendix. To remove the
whole key definition use ts_clrkeys (see infra). To temporar-
ily hide one key from the list of defined keys, use ts_hidekey
(see infra).

At present Tscope can read the parallel port and game port
with millisecond accuracy. Reading the keyboard, mouse
and joystick is also possible but with limited precision. Don’t
use these under realtime priority. Use the parallel and game
port during the actual experiment. Use the mouse, keyboard
or joystick while developing. Try to avoid input from multi-
ple devices. This can cause delays.

All necessary permission settings and driver requests are au-
tomatically handled at start-up and shutdown of your pro-
gram. When loading a driver fails, the program will stop
with an error message.

6.7 int ts_hidekey(int key);

Temporarily deactivates one response key, which is useful in
situations where multiple simultaneous keypresses are regis-
tered (see timing examples).

The argument to this function is the response value that has
to be deactivated, not the key code.

Reactivating all defined keys is possible by calling ts_hidekey(0).

Tscope reference-manual

6.8 void ts_clrkeys();

Returns the number of active keys left. If no active keys are
left, Tscope closes with an error message (to avoid endless
loops).

Removes the whole response key definition.

6.9 int ts_resp(__int64 *time, __int64 *error, __int64 maxtime);

Waits for a response. Writes the number of tics between
computer start-up and the response to *time, writes the es-
timated timing error to *error. Returns the number of the
response key pressed.

The value of maxtime defines the maximum time to wait for
a response (in tics). Setting maxtime to 0 means waiting
until response, however long. If no response is registered
at the end of the interval 0 is returned and the time and
timing error at the end of the interval are written to *time
and *error.

When no keys are defined, this function closes Tscope with
an error message (to avoid endless loops).

6.10 int ts_release(__int64 *time, __int64 *error, __int64 maxtime);

Waits until all response buttons are released. Writes the
number of tics between computer start-up and the release to
*time, writes the estimated timing error to *error. The func-
tion returns the number of the response key pressed (should
always return 0, meaning that all buttons are released).

The value of maxtime defines the maximum time to wait for
a release (in tics). Setting maxtime to 0 means waiting until
release, however long. When no keys are defined, this func-
tion closes Tscope with an error message (to avoid endless
loops).

6.11 int ts_respstatus();

Returns the status of the response keys. Use this function
when there is need for a custom timer function. Take care
though: to maximize speed the function doesn’t check if
Tscope is actually running, nor if any response keys are de-
fined. Take a look at the code of ts_resp to find out what
security measures you need and where to place them.

6.12 void ts_flushresp();

Waits for release of all response buttons.

6.13 void ts_vsync(__-int64 *time, __int64 *error);

Waits for a vertical retrace. Writes the number of tics be-
tween computer start-up and the moment of the sync-signal
to *time, writes the estimated timing error to *error.

Under ideal circumstances, the function reads the status of
vertical retrace signal directly from the computer’s registry.
In situations where that’s not possible, a vertical retrace
signal is simulated.

Tscope reference-manual

22

Tscope will simulate the retrace signal at the actual refresh
rate in the following cases:

e In windowed mode.

e If the refresh rate is too high. Default the maximum
value is 70Hz, but it can be altered by the function
ts_vsynclimit.

e If the vsync register cannot be opened. (i.e. if ioperm
is not properly installed).

If no window is opened yet, Tscope will simulate the retrace
at the requested refresh rate.

With every change of the graphics mode, the vsync mode
will be updated.

Note that the reliability of the readout or simulation of the
vertical retrace is highly influenced by the priority of the
program. Reliability increases with the priority of the pro-
gram (but be aware of the possible problems with realtime
priority).

6.14 void ts_vsyncs (__int64 *time, __int64 *error, int nsync);

Adapted ts_vsync. Waits until the beginning of the nsync-th
vsync. Can be useful in priming-experiments (e.g.: prime
remains on screen for 3 refresh cycles).

Writes the number of tics between computer start-up and
the moment of then nsync-th sync-signal to *time, writes
the estimated timing error to *error.

6.15 int ts_vsyncresp(__int64 *time, __int64 *error, int maxsync);

Like ts_resp, but waits for a given number of vsyncs instead
of milliseconds. Use this function when you want the stim-
ulus to be removed in a proper way (synchronized with the
screen) during the response interval.

6.16 int ts_vsyncstatus();

Returns the status of the vsync signal. Returns 1 at the
beginning of a screen retrace, 0 otherwise. Use this function
when there is need for a custom timer function. Take care
though: to maximize speed the function doesn’t check if
Tscope is actually running, nor if the vsync system is started.
Take a look at the code of ts_vsync to find out what security
measures you need and where to place them.

6.17 int ts_vsyncmode(int mode);

This function is written for the sake of completeness, not for
actual use. Use it at your own risk.

By default, Tscope chooses between reading out the vsync
signal from the registry, simulating a vsync signal at the
requested refresh rate, or simulating a vsync signal at the
actual refresh rate. With this function, you can force Tscope
to choose one of the alternatives.

Parameter values are:

e REALSYNC will force Tscope to read out the vsync
registry.

Tscope reference-manual

23

e SIMSYNC_ACTUAL will force Tscope to simulate vsync
at the actual refresh rate.

e SIMSYNC_REQ will force Tscope to simulate vsync at
the requested refresh rate.

e WHATEVER will leave the choice to Tscope. Default.

Forcing T'scope to read out the vsync signal from the registry
can result in endless loops, if the signal cannot be caught.
Forcing Tscope to simulate the vsync signal at the requested
refresh rate will result in bad estimates of how long your
stimulus was on screen, when the requested and actual re-
fresh rate differ.

This function returns the previous vsync mode.

6.18 int ts_vsynclimit(int limit);

Changes the refresh frequency limit where Tscope will start
using vsync simulation. Default this is set to 70Hz. Above
this frequency, the vsync signal cannot be read out fast
enough on most systems, resulting in signal misses.

On some systems, this frequency limit might be higher. Only
change this value if you are confident that the new value will
work on your system. Expect endless loops if you set the
value too high.

All values between 50 and 150 will be accepted by ts_vsynclimit
(this doesn’t mean that your hardware supports these val-
ues).

This function returns the previous vsync limit.

Use this function at your own risk.

6.19 int ts_setserialport(int port);

Parameter function to specify on which serial port a Cedrus
RB-x30 Response Pad is configured. The port number can
be found under Control Panel - System - Hardware - Device
Manager - Ports, or by running tscope/tests/testsport.c

This function needs to be called before defining response keys
on the Cedrus response pad (S1-S7).

This function returns the previous serial port number.

6.20 void ts_settrigger (int port, __int64 time);

Parameter function to send trigger signals to the parallel
port of a computer (for syncronizing your Tscope-program
with programs running on another computer, e.g. an ERP-
machine or some other imaging device).

Port contains the number of the parallel port you want to
write to (1, 2 or 3), time contains the number of tics each
trigger has to stay on (depends on the timing resolution of
the computer you're sending triggers to).

6.21 void ts_trigger (char val);

Sends a trigger value to the parallel port specified by ts_settrigger.

The signal is reset to 0 after the time specified with ts_settrigger.

Trigger parameters have to be set before you call this func-
tion. Tscope will close with an error message if you don’t.

Tscope reference-manual

24

6.22 __int64 tts(__int64 time);

Converts clock tics into seconds.

6.23 __int64 ttm(__int64 time);

Converts clock tics into milliseconds.

6.24 __int64 ttmu(__int64 time);

Converts clock tics into microseconds.

6.25 __int64 stt(__int64 time);

Converts seconds into clock tics.

6.26 __int64 mtt(__int64 time);

Converts milliseconds into clock tics.

6.27 __int64 mutt(__int64 time);

Converts microseconds into clock tics.

Tscope reference-manual

25

7 Randomization

Defined in random.hl and random.c

This part contains a number of randomization functions based
upon an paper by Marc Brysbaert in BRMIC, 1992. More
specifically:
e randomizes drawing from uniform, normal or exponen-
tial decreasing distributions.

e producing random lists without replacement.

e producing pseudo-random lists with limitations to the
succession of values (for instance used for task-switching).

When working with complex randomization, it’s better to
use two programs: one to produce the randomized list and
one to run the trials, based on the values in the randomized
list. These are two completely different jobs and putting
these together can complicate the testing of your program.

Another option is to use the statistical language R to produce
random lists because it offers more sophisticated randomiz-
ers.

7.1 int ts_rseed (int newseed[3]);

Provides the possibility of user initiated random seeds. To
be used for simulations: identical seeds always result in the
same randomized list.

7.2 int ts_rseedfile (char *file);

Takes the seeds from a file. The last used seeds is always
written to seed.dat. Starting a new random sequence with
the seeds in this file can be used to reduce the chance of
overlapping random series in sequential runs to zero. How-
ever, chances of overlapping series is by standard incredibly
small so this function is to please the die-hard control freaks.
There is even a risk in using this function: if you copy your
program to different computers, without deleting seed.dat,
all your computers will generate the same random lists.

7.3 double ts_runif ();

Returns a random double, drawn from a uniform distribution
with minimum 0 and maximum 1. This is the basic random
function used by all other functions below. The seeds are
automatically initialized at the first call of the function. This
initialization is based upon the clock unless the seeds are
provided by the user by ts_rseed or ts_seedfile.

7.4 double ts_rexp ();

Returns a random double drawn from a distribution with
exponential decreasing density. Minimum is 0 and mean is

1.

7.5 double ts_rnorm (double mean, double sd);

Returns a random double drawn from a normal distribution
with mean mean and standard deviation sd (for a standard
normal distribution use mean 0 and standard deviation 1).

Tscope reference-manual

file:../../include2/random.h.html
file:../../src/random.c.html

7.6 int ts_rint (int nmax);

Returns a random integer from the specified range [0:nmax-
1].

7.7 int ts_rlist (int nmax, int freq, int *list);

Fills *list with a list of random integers. This list contains
all numbers from 0 to nmax-1 freq times.

Don’t forget to provide an array large enough to contain the
entire list (size = nmax x freq).

7.8 int ts_rslist (int nmax, int freq, int *list);

Fills *list with a list of random integers. This list contains
all coupled combinations of the numbers 0 to nmax-1 freq
times.

Don’t forget to provide an array large enough to contain the
entire list (size = (nmax x nmax x freq)+1).

Tscope reference-manual

27

8 Mouse support

Defined in mouse.hl and mouse.c.

This is a small set of functions, that can be used for two
purposes.

The first is giving instructions to participants. One function
draws a box around some text (instructions) you generate
with the standard text output functions, another function
puts a click-to-continue-button on the screen.

The other mouse functions activate or hide a mouse pointer,

and report the coordinates of the mouse pointer on the screen.

Mouse button presses can be registered trough the standard
response functions. These functions can be used to generate
more complex user interfaces, or for example to implement
a Corsi block tapping task (see examples).

8.1 void ts_textbox (int x1, int y1, int x2, int y2);

Draws a frame between points (x1,y1) and (x2,y2). Within
this frame text can be put using the standard text output
functions.

8.2 wvoid ts_button (int x, int y);

Draws a button around point (x,y). Loads the mouse driver
if necessary and draws a mouse-pointer to the screen. Left-
clicking the button continues the program.

8.3 void ts_drawmouse();

Loads the mouse driver if necessary and draws a mouse
pointer on the screen.

8.4 wvoid ts_hidemouse();

Hides the mouse pointer.

8.5 int ts_xmouse();

Returns the horizontal position of the mouse pointer

8.6 int ts_ymouse();

Returns the vertical position of the mouse pointer

8.7 void ts_mousepos (int x, int y);

Moves the mouse pointer to position (x,y).

8.8 int ts_mousecolor (int color);

Changes the color of the mouse pointer. Returns the previ-
ous color value.

Tscope reference-manual

28

file:../../include2/mouse.h.html
file:../../src/mouse.c.html

9 Bitmaps

9.1 struct map;

Defined in blit.h and blit.c

Normally, all graphics functions draw onto the screen. It
is also possible to draw onto a memory bitmap, and blit
that bitmap to the screen, once your drawing operations are
finished. This is necessary in cases where your stimulus is too
complex to be drawn within one refresh cycle of the screen.
The double buffer also provides similar functionality.

The bitmap functions add the following:

e it is possible to have more than one bitmap in memory
(increase program speed even more)

e you can choose the size of the bitmap (save memory)
e you can load bitmaps from a .bmp file

e you can do special operations, like rotating, zooming,
etc.

The destination coordinates of the blitting functions below
are interpreted dependent on the coordinate system used.
With the Cartesian coordinate system, bitmaps are blitted
centered around the destination coordinates. With the stan-
dard coordinate system, the destination coordinates corre-
spond to the upper left corner of the blitting area.

Bitmap memory structure used by Tscope. It is defined as
follows:

typedef struct {

int sw, sh;

int w, h;

BITMAP x*b;
} map;
sw and sh contain the total width and height of the bitmap
in pixels.
w and h contain the with and height of one quadrant of the
bitmap (for use with the Cartesian coordinate system).

b points to the content of the bitmap.

9.2 map *ts_makebmp (int w, int h);

Creates a bitmap with dimensions w and h.

If you use the Cartesian coordinate system, w and h are in-
terpreted as the horizontal and vertical size of each quadrant
of the bitmap. The center of the bitmap will be (0,0), x will
range from -w to +w, y from -h to +h.

If you use the standard coordinate system, w and h are in-
terpreted as the horizontal and vertical size of the whole
bitmap. (0,0) will be the upper left corner of the bitmap,
(w,h) will be the lower right of the bitmap.

The default background color of the newly created bitmap is
the same as the screen and double buffer background color.

Returns the address of the newly created bitmap.

Tscope reference-manual

29

file:../../include2/blit.h.html
file:../../src/blit.c.html

9.3 map *ts_readbmp (char *file);

Creates a bitmap containing the bitmap-file.

Returns the address of the bitmap.

9.4 wvoid ts_killbmp (map *what);

Removes the specified bitmap out of memory. You should
do this at the end of your program for all bitmaps created
with ts_makebmp or ts_readbmp.

9.5 map *ts_tobmp (map *where);

Defines one the specified bitmap as destination of the follow-
ing drawing operations.

9.6 void ts_clrbmp (map *what, int color);

Clears one of the self-made bitmaps. Color defines the back-
ground color. You can either provide a color (pre-defined or
by means of ts_makecolor), or you can use the pre-defined
TRANS and NONE values. TRANS makes the background
transparent, while NONE takes the background color of the
screen and double buffer.

9.7 wvoid ts_blit (map *what, int dest_x, int dest_y);

Blits the specified bitmap to the current destination bitmap,
at the position defined by (dest_x, dest_y).

9.8 wvoid ts_partblit (map *what, int src_x1, int src_y1, int src_x2, int
src_y2, int dest_x, int dest_y);

Blits part of the specified bitmap to the current destination
bitmap. (srcx1, src.yl) en (srcx2, src.y2) are the coor-
dinates of the rectangular part of the source bitmap. The
image is blitted at position (destx, dest_y).

9.9 void ts_stretchblit (map *what, float ratio, int dest_x, int dest_y);

Blits a magnified or scaled down version of the specified
bitmap to the destination bitmap at position (dest_x, dest_y).
Ratio defines the scale factor (1 = original size, ;1 magnify,
i1 scale down).

9.10 void ts_flipblit (map *what, int flip, int dest_x, int dest_y);

Flips and blits the specified bitmap to the destination bitmap
at position (destx, dest_y). With flip you provide type of
flip. VFLIP flips the bitmap vertically, while HFLIP results
in a horizontal flip. VHFLIP combines both.

9.11 void ts_rotateblit (map *what, int cx, int cy, float angle, int
dest_x, int dest_y);

Rotates and blits the specified bitmap to the destination
bitmap at position (dest_x, dest_y). (cx, cy) Defines the cen-
ter of the rotation, angle defines the angle (0-360, counter-
clockwise).

Tscope reference-manual

30

10 Sound support

Defined in isound.hl and sound.c

There are three groups of functions that provide sound sup-
port. The ’sample’ functions are for playing sounds from a
.wav file, the ’stream’ functions generate simple sounds on
the fly. The third group are the parameter functions for
both.

10.1 SAMPLE *ts_loadsample (char *filename);

10.2 void ts_killsample

Loads a .wav file into memory.

Returns the address of the sample.

(SAMPLE *spl);

Removes the specified sample out of memory. You should do
this at the end of your program for all samples loaded with
ts_loadsample.

10.3 int ts_playsample (SAMPLE *spl);

Starts playing the specified sample in the background (i.e.
the function gives control back to your program right away,
it does not wait until the end of the sample). Volume, pan,
and whether the sample is looped or played only once are
controlled by the parameter functions below.

A program running with REALTIME priority will not play
samples.

Returns the voice number that was allocated for the sample
or negative if no voices were available.

10.4 void ts_adjustsample (SAMPLE *spl);

Alters the parameters of a sample while it is playing (which
is useful for manipulating looped sounds). Volume, pan and
the loop flag can be manipulated. Normally, changing pa-
rameter values does not influence a playing sample, so the
parameters have to be set before playing the sample. With
this function you can impose the parameter changes on a
sample while it is playing.

10.5 void ts_stopsample (SAMPLE *spl);

Stops playing the specified sample.

10.6 void ts_playstream(__int64 time);

Generates & plays a sound in the foreground (i.e. the func-
tion does not give control back to your program before the
sound has stopped playing). After the specified time the
sound stops and control goes back to your program.

The volume and pan of the sound are controlled by the pa-
rameter functions below.

The standard sound is a sine wave of 800Hz. The frequency
of the wave can be changed with ts_sinefreq. You can replace
the sine wave with a sound generating function of your own.

In contrast to the sample functions, the sound functions also
work in programs running with REALTIME priority.

Tscope reference-manual

31

file:../../include2/sound.h.html
file:../../src/sound.c.html

10.7 int ts_rtstream(__int64 * time, __int64 * error, __int64 maxtime);

10.8 int ts_volume (int

Same as ts_playstream, but stops playing the sound if a re-
sponse is given. Parameters and return value are the same
as other response registration functions.

volume);

Sets the volume of samples or sounds to be played. Accepts
values between 0 and 255. Default is 255.

The values are on a linear scale, our ears’ sensitivity is loga-
rithmic. This means the audible difference between values 1
and 2 will be about the same as the difference between 100
and 200.

The output volume also depends on your Windows’s volume
settings. If these are set to 0, you will hear nothing, even
if you set the ts_volume to its maximum. sndvol32.exe
controls the Windows sound volume (choose start menu -
run, and type sndvol32 to open it). Both "Volume control’
and "Wave’ should be set to the maximum for optimal results.
The balance should be set to the center.

Returns the previous value.

10.9 int ts_pan (int pan);

Sets the pan of samples or sounds to be played. Accepts
values between 0 (all sound to the left) and 255 (all sound
to the right). Default is 127 (centered).

The panning also depends on your Windows’s balance set-
tings. See the previous entry for more information about
setting the balance in Windows.

Returns the previous value.

10.10 int ts_loop (int loop);

Controls whether samples will be looped or played only once.
Accepts ON and OFF as argument. Returns the previous
value.

10.11 int ts_sinefreq (int freq);

Sets the frequency of the sine wave function. Default is 800.
Maximum is half of the samplerate (see below).

Returns the previous value.

10.12 unsigned char (*ts_streamfunc(unsigned char (*func) (__int64)))

(—-int64);

Replace the sine function with your own sound generating
function.

10.13 void ts_drawsound ();

Helper function that draws a graphical representation of the
values generated by the sound function currently in use.

Tscope reference-manual

32

10.14 int ts_streambufsize (int size);

Sets the size of the stream buffer used by the sound streams.
Default is 1024 bytes. Increase if there are cracks in the
sound. Decrease if the sound doesn’t stop playing fast enough
after a response or after the end of the playing interval.

Returns the previous value.

10.15 int ts_samplerate (int rate);

Sets the number of samples per second. The samplerate in-
fluences the sound quality (higher is better). The maximum
sound frequency that can be achieved is half of the sampler-
ate. A rate of 44100 samples per second is cd quality, 11025
is telephone quality. Default is 22050.

Returns the previous value.

Returns a pointer to the previous sound function.

10.16 AUDIOSTREAM * ts_makestream();

Makes an audio stream using the current samplerate, stream-
buffer size, volume and pan.

Returns the address of the newly created audio stream.

10.17 void ts_killstream (AUDIOSTREAM *stream);

Removes the specified audio stream from memory. You should
do this at the end of your program for all streams created
with ts_makestream.

10.18 void ts_updatestream (AUDIOSTREAM *stream);

Fills the buffer of the specified audio stream with values
generated by the current sound generating function.

Tscope reference-manual

33

11 Sound support - new (experimental) API

Defined in isound2.h| and sound2.c

The old sound functions work fine for playing sounds, but
recording sound does not work with the underlying allegro
library. Therefore a new set of sound functions are being
implemented based on the libsndfile and portaudio libraries.

The functions are still experimental. This has some implica-
tions:

e currently the new sound functions start with snd2_ in-
stead of the usual ts_. This will change once all features
are implemented and all (or most) bugs are found.

e the set of functions is not complete yet. Expect addi-
tions.

e the behavior and interface of the functions may change.
e there may be bugs.

The old sound functions still work, but you can not mix
systems in one program. Tscope will exit (at runtime) when
you try to do that.

11.1 struct snd2_sample;

Bitmap memory structure used by Tscope. It is defined as
follows:

typedef struct {

int channels;

int samplerate;
sf_count_t frames;
sf_count_t current_frame;
float *data;

} snd2_sample;

channels and samplerate contain the number of channels and
the sample rate of the sample.

frames and current_frame contain the total number of frames
of the sample and the frame that is currently being processed
(for internal use).

data points to the contents of the sample.

11.2 struct snd2_stream;

A sound stream.

11.3 int snd2_channels(int channels);

Sets the number of channels the recording and stream func-
tions. Possible values are 1 (MONO) or 2 (STEREO). De-
fault is 1.

Has no influence on samples that are read from disk - for
disk files the number of channels is set by the file’s header.

Returns the previous number of channels.

Tscope reference-manual

34

file:../../include2/sound2.h.html
file:../../src/sound2.c.html

11.4 int snd2_samplerate(int rate);

Sets the number of samples per second for the recording
and stream functions. The samplerate influences the sound
quality (higher is better). Supported values are 44100 (cd
quality), 22050 or 11025. Default is 22050. This is good
enough for recording voices.

Has no influence on samples that are read from disk - for
disk files the sample rate is set by the file’s header.

Returns the previous samplerate.

11.5 int snd2_sampleformat(int format);

Sets the sample format in which samples are written to disk.
Possible values are 16-bit integer (SAMPLE_INTEGER) and
32-bit floating point (SAMPLE_FLOAT). Default is SAM-
PLE_INTEGER.

Internally (i.e. in RAM memory) samples are always repre-
sented as 32-bit floats.

Returns the previous sample format.

11.6 snd2_sample *snd2_makesample(int length);

Creates a sample that is large enough to hold 'length’ mil-
liseconds of sample data and sets the samplerate and number
of channels according to the values set by snd2_samplerate
and snd2_channels. The sample data is initialized to 0 and
the current frame set to 0.Returns a pointer to the sample
that was created.

11.7 void snd2_allocatesample(snd2_sample *samp);

Internal function. Allocates memory for the data element of
the snd2_sample stucture and initializes the data to 0. The
amout of memory is set according to the frames element of
the snd2_sample structure.

11.8 void snd2 killsample (snd2_sample *samp);

Removes the specified sample out of memory. You should
do this at the end of your program for all samples generated
with snd2_makesample or snd2_readsample.

11.9 snd2_sample *snd2_readsample (char *file);

Reads a sample from the specified file and copies it to the
sample structure.Returns a pointer to the sample that was
created.

11.10 int snd2_writesample(snd2_sample *samp, char *file);
Writes the sample to the specified file.Returns the number
of frames written.

11.11 int snd2_recordsample_blocking(snd2_sample *samp);

Records the sample samp using the blocking api. The func-
tion does not return until the samples data element is full,
i.e. until the number of frames specified in the frames ele-
ment of the sample structure have been recorded.

Tscope reference-manual

35

11.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

void snd2_playsample_blocking(snd2_sample *samp);
Plays the sample samp using the blocking api. The func-

tion does not return until the sample is finished, i.e. until
the number of frames specified in the frames element of the
sample structure have been played.

snd2_stream * snd2_recordsample(snd2_sample *samp);

Starts recording the sample samp using the non-blocking api.
The function returns immediately and the sample is recorded
until its data element is full or until snd2_stopsample is
called.Returns a pointer to the stream that was started.

snd2_stream *snd2_playsample(snd2_sample *samp);

Starts playing the sample samp using the non-blocking api.
The function returns immediately and the sample is played
until it is finished or until snd2_stopsample is called.Returns
a pointer to the stream that was started.

k

int snd2_querysample(snd2_stream * stream)

Checks whether a given stream has finished playing/recording
or not. Returns 1 when the stream is still active and 0 when
the stream has finished.

void snd2_stopsample(snd2_stream * stream);

Stops playing/recording a given stream.

float snd2_getstreamtime(snd2_stream * stream);

returns the time of a given stream in seconds.

__int64 snd2_getsampletime(snd2_sample * samp);

returns the time of a given sample in samples.

void snd2_tobuffer(snd2_sample * samp);

dumps the contents of a sample to disk.

void snd2_frombuffer(snd2_sample *samp);

reads the contents of a the disk buffer to a sample.

Tscope reference-manual

36

12 Linux notes

All differences between the Windows and Linux version of
Tscope are reported here. If a function is not mentioned
in this section, it will behave identical on both operating
systems.

12.1 ts_priority

From tscope version 168 onwards this function can actually
increase the priority of your program when running on Linux.
It must, however, be used with care. Here are some consid-
erations:

e On Linux systems the higher priority modes can only
be selected when running as root. When a non-root
user requests a higher priority the program writes a
warning to the console and continues running with nor-
mal priority.

e When running in X11 mode, increasing the priority of
your program will slow down the X11 server. There-
fore, it is necessary to suspend your program from time
to time to allow the X11 server to display your stimuli,
poll the mouse status, etc. The function ts_waitmode
controls where and when Tscope will suspend your pro-
gram. You will need to experiment with the different
wait modes to find a good setting. Giving up too much
cpu cycles will cause the vsync function to miss sync
signals, keeping all cycles for yourself will slow down
graphics.

e Running in console mode (as root) seems the best op-
tion when running programs with increased priority.
The only problem is that the current version of Alle-
gro has trouble with usb mice on linux. On my system
this could be fixed by telling Allegro to read the mouse
state from /dev/input/eventN, by adding

[mouse]
mouse = EV

to the allegro configuration file. This configuration file
can be found in the source directory of allegro and
is called allegro.cfg. If you are using ts_scrcfg and
ts_timercfg you will need to add this to your tscope.cfg
file.

e The good news, however, is that timing precision on
Linux is already quite accurate when running with nor-
mal priority in X11 mode. Moreover, as in the Win-
dows version, the *error parameter of the timing func-
tions will accurately report the timing error of each
timed event, so that trials where the timing error was
too large can be filtered out afterwards.

Currently, Tscope uses a call to the function setpriority to
change the priority of the program. The priority of a pro-
gram could be uncreased even further by calling sched_setscheduler
and mlockall, but this would also increase the risk of locking

up your system.

Tscope reference-manual 37

12.2 ts_waitmode

12.3 ts_defkey

12.4 ts_vsync

On Linux, Tscope programs can give up short intervals of

cpu time by blocking on a read of the real time clock (/dev/rtc).

This allows other processes (such as X11) to run for a short
time. When running a program with higher priority in X11
mode, the waitmode should be set to SLEEP_WAIT. This
can, however, only be done when running as root. If a wait-
mode different from the default BUSYLOOP is requested
by a non-root user, the program will write a warning to the
console and will continue using the BUSYLOOP waitmode.

Most input devices will work in the same way on Linux and
on Windows. There are two minor differences:

e The game and parallel port can only be read when
running as root.

e The cedrus usb serial response box is not supported on
Linux.

The logic for selecting a vsync mode differs from the Win-
dows version for the following reasons:

e Only root can read the status of the vsync signal from
the registry.

e The actual refresh rate can not be reported by Linux.
In order to know the refreshrate of your screen, it is
necessary to start your program with the desired graph-
ics mode and then use your screen’s menu to read out
the refresh rate. This value can then be entered in your
call to ts_refreshrate to make the vsync simulation work
properly.
Under ideal circumstances, the function reads the status of
vertical retrace signal directly from the computer’s registry.
In situations where that’s not possible, a vertical retrace
signal is simulated.

Tscope will simulate the retrace signal at the requested re-
fresh rate in the following cases:

e If no window is opened yet.
e In windowed mode.

o If the refresh rate is too high. Default the maximum
value is 70Hz, but it can be altered by the function
ts_vsynclimit.

e If the vsync register cannot be opened. (i.e. if the user
is not root).

Tscope reference-manual

38

13 Mac OS X notes

13.1 ts_priority

13.2 ts_waitmode

13.3 ts_defkey

13.4 ts_vsync

13.5 ts_trigger

All differences between the Windows and Mac OS X version
of Tscope are reported here. If a function is not mentioned
in this section, it will behave identical on both operating
systems.

On Mac, the priority of a Tscope program can not be changed.

All programs will run with normal priority on Mac. If the
user tries to change the priority a warning will be printed on
the console and the program will continue.

On Mac, the waiting mode of a Tscope program can not be
changed. All programs will wait using a busyloop on Mac.
If the user tries to change the waiting mode a warning will
be printed on the console and the program will continue.

Only the keyboard, mouse and joystick work on Mac. Read-
ing input from the parallel, game or serial port is not possi-
ble. If a user tries to define one of these keys the program
will abort with an error message.

On Mag, the status of the vsync signal can not be read di-
rectly from the register. Tscope will always revert to simu-
lating a vsync signal at the requested refreshrate on Mac. If
the user tries to change the vsync mode a warning will be
printed on the console and the program will continue.

On Mac, Tscope can not write directly to the parallel port.
If the user tries to send trigger signals to the parallel port
Tscope will close with an error message.

Tscope reference-manual

39

14 Appendix A: Predefined values

14.1 Debug levels

14.2 Color depths

14.3 Screen sizes

DEBUGO
DEBUGI1
DEBUG2
DEBUGS3
DEBUG4

8, 15, 16, 24 or 32.

Normal aspect ratio:

SIZEO (QVGA, 320 x 240 pixels).
SIZE1 (VGA, 640 x 480 pixels).

SIZE2 (SVGA, 800 x 600 pixels).
SIZE3 (XGA, 1024 x 768 pixels).
SIZE4 (XGAplus, 1152 x 864 pixels).
SIZE5 (SXGA, 1280 x 1024 pixels).
SIZE6 (SXGAplus, 1400 x 1050 pixels).
SIZE7 (UXGA, 1600 x 1200 pixels).

Widescreen aspect ratio:

14.4 Screen modes

14.5 Colors

WSIZE3 (WXGA, 1280 x 768 pixels).
WSIZE4 (WXGAplus, 1440 x 900 pixels).
WSIZE5 (WSXGA, 1600 x 1024 pixels).
WSIZEG
WSIZE7

~ o~ o~ o~

WUXGA, 1920 x 1200 pixels).

WINDOW
FULLSCREEN
FULLSCREEN_ACCEL

WHITE
BLACK
RED
GREEN
BLUE
YELLOW
MAGENTA
CYAN
GREY75
GREY50
GREY25

WSXGAplus, 1680 x 1050 pixels).

Tscope reference-manual

40

14.6 Fonts

e ARIAL
e COURIER
e TIMES

14.7 Font sizes

e 8,9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 36, 48,
72.

14.8 Font styles

¢ REG

e BOLD

o IT

e BOLDIT

14.9 Coordinate systems

e CARTESIAN
e STANDARD

14.10 Program priorities

e REALTIME

e HIGH

e ABOVE_NORMAL
e NORMAL

e BELOW_NORMAL
o IDLE

14.11 Buttons

e Keyboard

— KEY_A,KEY_B,KEY.C,KEY_D, KEY_E,KEY_F,
KEY_G,KEY_H,KEY_I, KEY_J, KEY K, KEY L,
KEY M, KEY_N,KEY_O, KEY_P,KEY_Q, KEY R,
KEY.S,KEY.T,KEY_U, KEY_V, KEY.W, KEY X,
KEY.Y, KEY_Z.

— KEY.0, KEY_1, KEY_2, KEY_3, KEY 4, KEY 5,
KEY_6, KEY_7, KEY_8, KEY.9.

— KEY_0_PAD, KEY_1_PAD, KEY_2_PAD, KEY_3_PAD,
KEY_4_PAD, KEY_5_PAD, KEY_6_PAD, KEY_7_PAD,
KEY_8_PAD, KEY_9_PAD.

— KEY_F1, KEY_F2, KEY_F3, KEY_F4, KEY_F5,
KEY_F6, KEY_F7, KEY_F8, KEY_F9, KEY_F10,
KEY_F11, KEY_F12.

— KEY_ESC, KEY_TILDE, KEY_MINUS, KEY_EQUALS,
KEY_BACKSPACE, KEY_TAB.

— KEY_OPENBRACE, KEY_CLOSEBRACE, KEY_ENTER,
KEY_COLON, KEY_QUOTE.

— KEY_BACKSLASH, KEY_BACKSLASH2, KEY_COMMA,
KEY_STOP, KEY_SLASH.

Tscope reference-manual 41

14.12 Wait modes

14.13 Vsync modes

— KEY_SPACE, KEY_INSERT, KEY_DEL, KEY_HOME,
KEY_END, KEY_PGUP, KEY_PGDN.

— KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_DOWN.

— KEY_SLASH_PAD, KEY_ASTERISK, KEY_MINUS_PAD,
KEY_PLUS_PAD, KEY_DEL_PAD, KEY_ENTER_PAD.

— KEY_PRTSCR, KEY_PAUSE, KEY_ABNT_C1.

— KEY_YEN, KEY_KANA KEY_CONVERT, KEY_NOCONVERT,

KEY_AT, KEY_CIRCUMFLEX, KEY_COLON2,
KEY_KANJI.

— KEY_LSHIFT, KEY_RSHIFT, KEY LCONTROL,
KEY_RCONTROL, KEY_ALT, KEY_ALTGR, KEY_LWIN,
KEY_RWIN, KEY_MENU.

— KEY_SCRLOCK, KEY_NUMLOCK, KEY_CAPSLOCK.

Keyboard, from cygwindtscope-1.0.3 / allegro
4.2.0 onwards

— KEY_EQUALS_PAD, KEY_.BACKQUOTE, KEY_SEMICOLON,

KEY_COMMAND.

— KEY_UNKNOWN1, KEY_ UNKNOWN2, KEY UNKNOWNS3,
KEY_UNKNOWN4.

— KEY_UNKNOWNS5, KEY_UNKNOWNG6, KEY_UNKNOWN?7,
KEY_UNKNOWNS.

Parallel port 1: P1, P2, P3, P4, P5.

Parallel port 1 (inverted buttons): IP1, IP2, IP3,
P4, IP5.

Parallel port 2: PP1, PP2, PP3, PP4, PP5.

Parallel port 2 (inverted buttons): IPP1, IPP2,
IPP3, IPP4, IPP5.

Parallel port 3: PPP1, PPP2, PPP3, PPP4, PPP5.

Parallel port 3 (inverted buttons): IPPP1, IPPP2,
IPPP3, IPPP4, IPPP5.

Game port: G1, G2, G3, G4.

Game port (inverted buttons): IG1, IG2, IG3,
1G4.

Cedrus serial port emulation on usb: S1, S2, S3,
S4, S5, S6, S7.

Joystick: J1, J2, J3, J4, J5, J6, J7, J8, J9, J10.
Mouse: M1, M2, M3.

BUSYLOOP
SLEEP_WAIT
SLEEP_RESP
SLEEP_VSYNC

REALSYNC
SIMSYNC_ACTUAL
SIMSYNC_REQ
WHATEVER

Tscope reference-manual

42

14.14 Flipped blit modes
e VFLIP
e HFLIP
e VHFLIP

14.15 Sound: number of channels

e MONO
e STEREO

14.16 Sound: sample format for output files

e SAMPLE_INTEGER
e SAMPLE_FLOAT

Tscope reference-manual

43

15 Appendix B: Tscope internals

Defined in linternal.h and internal.c.

These functions initialize and close the devices, subsystems
etc. used by Tscope. Normally, each device or subsystem is
initialized automatically at the moment it is needed, so you
won’t have to bother calling these functions. In fact, you
just can’t - they are not declared in tscope.hl

One of the moments where you might need to use these func-
tions, is when you are writing an add-on package for Tscope,
rather than a program that just uses Tscope functions. The
variables and functions defined here can be accessed if you
include tscope/internal.h in your program.

The functions and variables from internal.c and .h are doc-
umented in the header file, not over here.

Tscope reference-manual

44

file:../../include2/internal.h.html
file:../../src/internal.c.html
file:../../include/tscope.h.html
file:../../include2/internal.h.html

	Screen and double buffer operations
	int ts_init ();
	void ts_fatal (const char *format, ...);
	void ts_scrcfg (char *file)
	int ts_debug(int mode);
	int ts_refreshrate (int rate);
	int ts_colordepth (int depth);
	int ts_scrsize (int size);
	int ts_scrxy (int x, int y);
	int ts_scrmode (int mode);
	int ts_doublebuff (int mode);
	void ts_clrscr();
	void ts_scrdump ();
	void ts_tobuff ();
	void ts_toscr ();
	void ts_clrbuff ();
	void ts_blitbuff ();

	Graphics parameters
	int ts_bgcolor (int color);
	int ts_fgcolor (int color);
	int ts_textmode (int color);
	int ts_makecolor (int r, int g, int b);
	int ts_makehsvcolor(float h, float s, float v);
	int ts_fill (int mode);
	int ts_font (int type, int size, int style);
	int ts_setfont (int fontno);
	int ts_loadfont (char *fontfile);

	Coordinate system
	XMAX
	YMAX
	SXMAX
	SYMAX
	int ts_coordinates (int system);
	int ax (float x);
	int ay (float y);
	int sx (float x);
	int sy (float x);
	int cx (float x);
	int cy (float y);
	void ts_agrid ();
	void ts_rgrid ();

	Formatted text input/output
	int ts_printf(int x, int y, const char *txt, ...)
	int ts_printf_centre(int x, int y, const char *txt, ...)
	int ts_printf_right(int x, int y, const char *txt, ...)
	int ts_printf_justify(int x1, int x2, int y, const char *txt, ...)
	int ts_textheight ()
	int ts_textlength (char *txt)
	int ts_scanf (int x, int y, char *format, ...);

	Drawing primitives
	void ts_getpixel (int x, int y)
	void ts_putpixel (int x, int y)
	void ts_circle (int x, int y, int radius)
	void ts_line (int x1, int y1, int x2, int y2)
	void ts_hline (int x1, int x2, int y)
	void ts_vline (int x, int y1, int y2)
	void ts_rect (int x1, int y1, int x2, int y2)
	void ts_triangle (int x1, int y1, int x2, int y2, int x3, int y3)
	void ts_polygon (int points, int *xy)
	void ts_arc (int x, int y, int ang1, int ang2, int r);
	void ts_ellipse (int x, int y, int rx, int ry);
	void ts_floodfill (int x, int y);

	Timing and registering responses
	void ts_timercfg (char *file)
	int ts_priority (int prio)
	__int64 ts_time();
	void ts_wait(__int64 time);
	int ts_waitmode(int mode);
	int ts_defkey (int key)
	int ts_hidekey(int key);
	void ts_clrkeys();
	int ts_resp(__int64 *time, __int64 *error, __int64 maxtime);
	int ts_release(__int64 *time, __int64 *error, __int64 maxtime);
	int ts_respstatus();
	void ts_flushresp();
	void ts_vsync(__int64 *time, __int64 *error);
	void ts_vsyncs (__int64 *time, __int64 *error, int nsync);
	int ts_vsyncresp(__int64 *time, __int64 *error, int maxsync);
	int ts_vsyncstatus();
	int ts_vsyncmode(int mode);
	int ts_vsynclimit(int limit);
	int ts_setserialport(int port);
	void ts_settrigger (int port, __int64 time);
	void ts_trigger (char val);
	__int64 tts(__int64 time);
	__int64 ttm(__int64 time);
	__int64 ttmu(__int64 time);
	__int64 stt(__int64 time);
	__int64 mtt(__int64 time);
	__int64 mutt(__int64 time);

	Randomization
	int ts_rseed (int newseed[3]);
	int ts_rseedfile (char *file);
	double ts_runif ();
	double ts_rexp ();
	double ts_rnorm (double mean, double sd);
	int ts_rint (int nmax);
	int ts_rlist (int nmax, int freq, int *list);
	int ts_rslist (int nmax, int freq, int *list);

	Mouse support
	void ts_textbox (int x1, int y1, int x2, int y2);
	void ts_button (int x, int y);
	void ts_drawmouse();
	void ts_hidemouse();
	int ts_xmouse();
	int ts_ymouse();
	void ts_mousepos (int x, int y);
	int ts_mousecolor (int color);

	Bitmaps
	struct map;
	map *ts_makebmp (int w, int h);
	map *ts_readbmp (char *file);
	void ts_killbmp (map *what);
	map *ts_tobmp (map *where);
	void ts_clrbmp (map *what, int color);
	void ts_blit (map *what, int dest_x, int dest_y);
	void ts_partblit (map *what, int src_x1, int src_y1, int src_x2, int src_y2, int dest_x, int dest_y);
	void ts_stretchblit (map *what, float ratio, int dest_x, int dest_y);
	void ts_flipblit (map *what, int flip, int dest_x, int dest_y);
	void ts_rotateblit (map *what, int cx, int cy, float angle, int dest_x, int dest_y);

	Sound support
	SAMPLE *ts_loadsample (char *filename);
	void ts_killsample (SAMPLE *spl);
	int ts_playsample (SAMPLE *spl);
	void ts_adjustsample (SAMPLE *spl);
	void ts_stopsample (SAMPLE *spl);
	void ts_playstream(__int64 time);
	int ts_rtstream(__int64 * time, __int64 * error, __int64 maxtime);
	int ts_volume (int volume);
	int ts_pan (int pan);
	int ts_loop (int loop);
	int ts_sinefreq (int freq);
	unsigned char (*ts_streamfunc(unsigned char (*func) (__int64))) (__int64);
	void ts_drawsound ();
	int ts_streambufsize (int size);
	int ts_samplerate (int rate);
	AUDIOSTREAM * ts_makestream();
	void ts_killstream (AUDIOSTREAM *stream);
	void ts_updatestream (AUDIOSTREAM *stream);

	Sound support - new (experimental) API
	struct snd2_sample;
	struct snd2_stream;
	int snd2_channels(int channels);
	int snd2_samplerate(int rate);
	int snd2_sampleformat(int format);
	snd2_sample *snd2_makesample(int length);
	void snd2_allocatesample(snd2_sample *samp);
	void snd2_killsample (snd2_sample *samp);
	snd2_sample *snd2_readsample (char *file);
	int snd2_writesample(snd2_sample *samp, char *file);
	int snd2_recordsample_blocking(snd2_sample *samp);
	void snd2_playsample_blocking(snd2_sample *samp);
	snd2_stream * snd2_recordsample(snd2_sample *samp);
	snd2_stream *snd2_playsample(snd2_sample *samp);
	int snd2_querysample(snd2_stream * stream)
	void snd2_stopsample(snd2_stream * stream);
	float snd2_getstreamtime(snd2_stream * stream);
	__int64 snd2_getsampletime(snd2_sample * samp);
	void snd2_tobuffer(snd2_sample * samp);
	void snd2_frombuffer(snd2_sample *samp);

	Linux notes
	ts_priority
	ts_waitmode
	ts_defkey
	ts_vsync

	Mac OS X notes
	ts_priority
	ts_waitmode
	ts_defkey
	ts_vsync
	ts_trigger

	Appendix A: Predefined values
	Debug levels
	Color depths
	Screen sizes
	Screen modes
	Colors
	Fonts
	Font sizes
	Font styles
	Coordinate systems
	Program priorities
	Buttons
	Wait modes
	Vsync modes
	Flipped blit modes
	Sound: number of channels
	Sound: sample format for output files

	Appendix B: Tscope internals

